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A particular formulation of the problem of control with respect to part of the variables, in which the 

initial and terminal states of the system belong to the same subspace, is considered. Necessary and 

sufficient conditions are established for linear autonomous systems of this type to be partially 

controllable, i.e. controllable with respect to part of the variables. Using the method of oriented 

manifolds [l], several theorems concerning the partial controllability of non-linear autonomous systems 

are proved. The control of the rotational motion of a rigid body by a single rotor is investigated. 

THE PROPERTY of partial controllability has been used in stabilization [2, 31 and optimal-control 
[4] problems. In these applications the initial state of the system was assumed to be arbitrary. 
This formulation has been most thoroughly investigated; in particular, necessary and sufficient 
conditions have been obtained for linear systems [5,6]. This paper is a sequel to [7]; the method 
used enables one to obtain fairly broad conditions for the controllability of non-linear systems 
and to reduce their verification to the analysis of a system of partial differential equations, 
similar to the equations for Lyapunov functions in stability theory; the results are thus readily 
applicable to stabilization problems. 

1. STATEMENT OF THE PROBLEM 

We will consider dynamical systems described by ordinary differential equations 

i=f(x,u), XEDER”, UEUER~, ,teT=[O,-) (1.1) 

where x is the phase vector and u the control vector, which is a bounded measurable function of 
the time t. The domains D and U are assumed to be convex and to contain the origin as an 
interior point. The function f is assumed to be continuously differentiable a sufficient number of 
times. 

When investigating the motion (1.1) one often encounters situations in which the system has 
integrals, so that it is uncontrollable (with respect to all the variables), and one must consider 
partial controllability. An example is the problem of controlling the rotational motion of a rigid 
body with a rotor, in which the absolute value of the total angular momentum of the carrier- 
body and the rotor is an integral, and the system is uncontrollable by varying the angular 
velocities of the body and the rotor. In reality, however, it is more important that the system, be 
controllable by varying the angular velocity of the carrier-body, while the motion of the rotor is 
unimportant. One thus arrives at the notion of partial controllability (in this case with respect to 
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the angular velocity of the body), which can be defined in different ways. The possibilities of 
control are exploited most completely if the non-distinguished variables are allowed to vary 
subject to no constraints whatever; that is to say, the behaviour of these variables may be 
selected in a special way to construct the required control. 

We will divide the phase vector into two subvectors, xT = (x,‘, x,‘) (CC, E 0, c R”, xe E De c RB) 
and introduce several definitions for system (1.1). 

Definition 1. System (1.1) is controllable with respect to the variable X~ in the domain D if, 
for any x,, xal E D,, a time t, ET and an admissible control u(t) exist such that the 
corresponding solution x(t) of system (1.1) satisfies the conditions 

Xa(O)=Xao, Xa(t,)=Xal, x(t)ED for oatat, 

Definition 2. System (1.1) is locally controllable (in the neighbourhood of zero) with respect 
to the variable X, if closed sets G1 c D,, G, c D exist, containing the origin, such that for any 
x a,,, xul E G1 a time tl ET and an admissible control u(t) exist such that the corresponding 
solution x(t) of system, (1.1) satisfies the conditions 

2. NECESSARY AND SUFFICIENT CONDITIONS FOR THE PARTIAL 
CONTROLLABILITY OF LINEAR SYSTEMS 

We will first consider controllability with respect to one coordinate X, = a’x of a linear system 

i=Ax+Bu (2.1) 

on the assumption that (B, A B, . . . , A”-lB) = r c n. Denote the subspace of controllability by 
& 

Theorem 1. System (2.1) is controllable with respect to the coordinate x, = aTx if and only 
if a is not an eigenvector of the matrix AT orthogonal to the vectors b,, b,, . . . , b,, where 
B=(bl, . . . ,b,,,). 

Proof. Necessity. Suppose, contrary to the assumption, that a is an eigenvector of AT (with 
eigenvalue h) orthogonal to the vectors 4, . . . , b,. Then, using Eqs (2.1), we get ia = Lx,. 
Hence it follows that for any t, ET values xuO, x,, exist not assumed by any solution x,(t) of 
system (2.1), i.e. the system is not controllable with respect to x,. This contradiction proves the 
theorem 

Sufficiency. We will consider the solution of the boundary-value problem separately in two 
cases. In the first case, we assume that a is not orthogonal to the vectors 4, . . . , b,. 
Transforming to a new basis whose first r vectors lie in the subspace of controllability R,, we 
conclude that in the new coordinates y the coordinate x, has the representation X, = GTy, where 
at least one of the numbers &, . . . , 6, does not vanish. Then for any xaO and x,, two points 
_Yi =(Yli> * * - 9 Yrj9 O, * * * 9 0) E R, (i = 0, 1) exist such that x, = ~5~y,~ + . . . +&y,. Since yi E R,, a 
control u(t) and a time tl ET exist such that the corresponding solution y(t) satisfies the 
conditions y(0) = y,,, y(tJ = y,. Then the solution of system (2.1) under the control u(t) satisfies 
the conditions x,(O) = xuo, x&J = xul, proving the assertion in this case. 

It remains to consider the case in which a is orthogonal to the vectors 4, . . ., b,,, but is not an 
eigenvector of AT. To solve the boundary-value problem, we use the explicit form of the 
solution x,(t). All possible cases may be reduced to the following three 

1. x,(t) = e7’(c1 cospt + c, sin Pt) 
2. x,(t) = e”(cltm-’ + cZtm-‘), m 3 2 
3. x,(t) = cleh’ + c,e4’, h, f h,, ci = const. 
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In all three cases, whatever the values of xaO, xal, one can choose constants ci and a and a time 
ri so as to satisfy the boundary condition. This proves the theorem. 

Example 1. Let us examine the controllability of the system 

4 =x1 +x2 +u, i2=2X1+.9+X3+U, i3=X2+X3+U (2.2) 

This system is uncontrollable (with respect to all the variables), since rank(b, Ab, A’b) = 2 < 3. Using 

Theorem 1, let us see whether it is controllable with respect to any coordinate, defining the vectors ~1, 

(i= 1, . . . ,5) to be the standard unit basis vectors and the vectors a, = (2, -1, -l)T, a, = (-1, 0, 1)r. The 

basis vectors are not orthogonal to the vector b=(l, 1, l)r, so by Theorem 1 system (2.2) is controllable 

with respect to x1 (i = 1, 2,3). The vectors a, and a5 are orthogonal to b and, in addition, ATa, = (0, 0, 

-2)T #ha,, ATa, =(-l, 0, l)T =a,; hence, by Theorem 1, the system is controllable with respect to 
x, = 2x, - xz - x3 but uncontrollable with respect to x5 = -x1 + xj. 

Proceeding now to investigate the controllability of system (2.1) with respect to a variable 
&=(a,,..., c#x, we shall assume that (a,, . . . , ct,) = k. A non-singular linear substitution 
reduces system (2.1) to canonical form 

(2.3) 

where 4, P2, P3 and Q1 are matrices of dimensions ~xr, rx(n-r), (n-r)x(n- Y) and r xm, 
respectively. 

Examining the projections of the vectors a,, . . . , a, on to the subspace of controllability R,, 
let us suppose that s (S d k) of them are linearly independent. Then, changing if necessary by a 
non-singular linear transformation, to a new variable &, we may assume that the projections of 
thefirstsvectors a,, . . . . a, are independent, while the remaining vectors as+l, . . . , a, project 
to zero, i.e. 

,fti = i iivyj (i=s+l,...,k) 
j=r+l 

Now, repeating the reasoning in the proof of Theorem 1, we see that system (2.3) is 
controllable if and only if, for any matrix K, = ($“, . . . , 
&~=(c%~,+~ ,..., &,)‘(j=s+l,..., k),wehave 

6;) built up from p different vectors 

rank(K,,, P3’Kp, . .., P,=(“-‘-‘)K,)?-2p (p=l,...,k-s) 

The results may be stated as the following theorem. 

Theorem 2. Let the vectors ai = (a,, . . . , a,)T(i = 1, . . . , k) be such that rank II au II= s 
(i=l, . . . , s; j=l, . . . , r), a,. = 0 (I= s+l, . . . , k; j= 1, . . . , r) and a; =(as+jr+l, . . . , a,+in)T 
(j=l, . . . . k-s). Then system (2.3) is controllable with respect to X, = (a,, . . . , ak)Ty if and 
only if, for any matrix K, = (a;, . . . , a;) built up from p different vectors a; (j = 1, . . . , k-s) 

rank(Kp.P3=Kp,..., P;(“+:)Kp)s2p (p=l,...,k-S) (2.4) 

Remark 1. The conditions of Theorem 2 are clearly satisfied if the vectors a,, . . . , ar belong to the 
subspace of controllability R,, i.e. if 

rank(B,AB,..., A”-‘B) = &(a,, .,., ak i B.AB, . . . . ,tn-‘B) (2.5) 

which is a sufficient condition for system (2.1) to be controllable with respect to x, = (a,, . . . , a,)Tx. 
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Remark 2. Since rank(K,,, P:K,, . . . , P$n-‘ml’Kp) s n-r, it follows from inequality (2.4) for p = k-s 
that 

n-ra2(k-s) (2.6) 

which is a necessary condition for system (2.3) to be controllable with respect to x,. 
In particular, if k = n - 1, inequality (2.6) and the condition r 2s imply that r=s=n-1 or r=s=n-2. 

In the first case the vectors a,, . . . , a,_, belong to the subspace of controllability, i.e. the sufficient 

condition is also satisfied. In the second case, one can show, as in the proof of Theorem 1, that the 

sufficient condition for controllability is satisfied if the vector a:_, is not an eigenvector of the matrix P,‘. 
We have thus proved the following corollary. 

Corollary 1. System (2.3) is controllable with respect to x, =(ar, . . . , an_i)ry if and only if either 
r=s=n-1,or r=s=n-2 and a:_, isnotaneigenvectorof P,‘. 

Example 2. Let us examine the controllability of the system 

i1=x2, &=x3, i3=x4, &=x5, &=O (2.7) 

The system as a whole does not contain a control, and it is obviously uncontrollable with respect to all the 

variables. By the necessary condition (2.6), it may be controllable with respect to two coordinates. 

Applying Theorem 2, we can show that the possible coordinate pairs are (x1, x,), (xi, x3), (x,, x,), (x,, 

x3), (x2, x,). System (2.7) is uncontrollable with respect to any other pair of coordinates (x,, x,). It is 

controllable with respect to any single coordinate, with the sole exception of x5. 
Analysing the structure of the trajectories in the uncontrollable cases, we conclude that the reason for 

uncontrollability with respect to a variable xU is the existence of an invariant hyperplane arx = 0, where 
a E R”. Thus, in Example 1, the invariant plane is the subspace of controllability x3-x1 =0, which 
explains why the system is uncontrollable with respect to the variable x. = xg -x1. Theorem 1 and 
Corollary 1 can be rephrased to state that the necessary and sufficient condition is the absence of an 
invariant hyperplane uTx = 0 (a E R”); this approach enables our results to be generalized quite easily to 

non-linear systems. 

3. CONTROLLABILITY OF NON-LINEAR SYSTEMS WITH RESPECT TO PART 
OF THE VARIABLES 

Non-linear systems can be conveniently investigated by geometrical methods, so the above- 
mentioned formulation of the controllability conditions in terms of invariant hyperplanes-or, 
more generally, invariant manifolds (IMs)-will now be useful. However, the structure of non- 
linear systems may be quite complicated, and they may lack IMs entirely, admitting of only 
oriented manifolds (OMs) [7],? which are in this case the source of the uncontrollability. 

We will illustrate this with some examples. 

Example 3. Examine the controllability of the system 

.i=y, j=y(l+cosx)-sinx, i=u (3.1) 

This system is in triangular form [l] and is uncontrollable in any domain, because the equations for x,y 
form a separate subsystem which does not contain a control. The system is obviously controllable with 
respect to the coordinate r. To study the controllability with respect to x and y, we need only consider 

tSee also KOVALEV A. M., The method of invariant relations in control theory for dynamical systems, with 

applications to problems of mechanics. Preprint No. 01, Inst. Prikl. Mat. i Mekh. Akad. Nauk Ukrainy, Donetsk, 1992. 
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system (3.1) in the xy plane. System (3.1) does not admit of the IM x=0, y=O, and the conditions of 
Theorem 1 are satisfied. Analysing the velocity field of the system in the xy plane, we conclude that the 

system is indeed locally controllable with respect to x and with respect to y . For example, a direct check, 

using a theorem of Levi-Civita [8], will verify that system (3.1) has the IM y = sinx, whose existence implies 
that the system is uncontrollable with respect to y in the whole space or in a domain containing the origin, 

e.g. in the sphere 2 + y2 + z? d RZ (R > 1). At the same time, it is controllable with respect to x, = k,x + ky, 
where kI f 0, in the whole space (Fig. 1). 

Example 4. Consider the system 

i=2y, j=3x2, i=l4 (3.2) 

As in the previous case, it can be shown that the conditions of Theorem 1 hold and the system is locally 
controllable with respect to x and with respect to y, because there are no IMs orthogonal to the x and y 
axes. Analysing the velocity field, we see that system (3.2) is controllable with respect to x. With respect to y , 

however, the system is not controllable in any domain, because any OM y = const, in particular, the x axis, 

is orthogonal to the y axis (Fig. 2). 

These examples show how, as in the theory of controllability with respect to all the variables 
[l], the use of IMs will yield only necessary conditions for partial controllability. To state these 
conditions we define sets O& = (x E D :x, = xti}-these are the sections cut out of D by the 
planes X, = x,. 

Theorem 3. If system (1.1) is controllable with respect to the variable xti in the domain D, 
then there are in D no IMs M such that M a Dml and D \ M I D,,, for some x,, xul E 0,. 

The proof is indirect. Suppose, contrary to assumption, that an IM M exists such that 
MzD,,~ and D\MID&. Choose x,, x,, E II,_, as boundary values. Then for any choice of 
control and values xe,,, 
point X,T = (XL, 

xpl E D,, system (1.1) cannot be steered in a finite time from the initial 
XL) to the terminal point ~1’ = (&, x,‘,), because the initial point is not in the 

IM while the terminal point is; hence the latter is accessible only in infinite time. This means that 
system (1.1) is uncontrollable with respect to X, in D, contrary to assumption. This proves the 
theorem. 

Using the concept of an oriented set, we can obtain the necessary and sufficient conditions for 
controllability with respect to part of the variables. For the proofs, it will be convenient to 
rephrase Definition 1 in terms of orbits [7]. 

Definition 3. System (1.1) is controllable with respect to X, in a domain D if pr,Or*D_ = 
Da VX, E 0,. 

Theorem 4. System (1.1) is controllable with respect to X, in a domain D if and only if there 
are in D no oriented sets N such that N 2 OXa and D\ N 1 DIa,, for some x~,,, xcll E 0,. 

Fxo. 1. F10.2 



loo0 A. M. KOVALEV 

Proof. Necessity follows from Theorem 3, since an IM is a special case of an oriented set. To 
prove sufficiency, let us assume, on the contrary, that system (1.1) is not controllable in D, i.e. 
X, E Q, exists such that pr+Or+D, f 0, or prXaOr-D,, z 0,. But Or*DXa is an oriented set 
which clearly contains D,, and since pr,Or*D, z D,, x,, E 0, exists such that D\Or-D, = 
D,, or D\Or+D, 2 D,,. This contradiction completes the proof. 

As to control with respect to a single coordinate X, = c?~, only the existence of an OM whose 
boundary is the hyperplane ~?x=O will lead to uncontrollability. As the boundary is 
differentiable, the method of oriented manifolds [l, 71 yields necessary and sufficient conditions 
for partial controllability. 

Theorem 5. System (1.1) is locally controllable with respect to a coordinate x, = oTx if and 
only if the partial differential equation 

(f(x,u), vV(x))= h(x,u) V(x)+G(x,u) Vu E U (3.3) 

has no solution V(x) = dx, where h(x, U) is a continuous function and G(x, u) is a function of 
fixed sign in D, x U, D,, for some neighbourhood of the point x = 0. 

In the consideration of control with respect to the variable X, = (a,, . . . , a#~, OMs that 
cause uncontrollability with respect to x, have boundaries orthogonal to RB, the subspace 
defined by equations y(x,) = 0, where y may also be non-differentiable. The method of 
oriented manifolds yields necessary conditions for partial controllability. As in the case of 
control with respect to all the variables, we distinguish between OMs of complete and 
incomplete dimensions [ 1,7]. 

Theoreriz 6. If system (1.1) is locally controllable with respect to a variable x, = (al, . . . , 
C#X, then the partial differential equation (3.3) has no solution V(x) = V(x,). 

Theorem 7. If system (1.1) is locally controllable with respect to a variable x, = (a,, . . . , 
a/x, then the system of partial differential equations 

n-s 

(f(X,U),V~(x))=,~,he(X,U)~(X)+Gi(X,u), VUEU (i=1,2,....,n-~) (3.4) 

has no solutions v(x) = y(x,). Here X,(x, U) are continuous functions, G,(x, U) is a function of 
fixed sign and G,(x, u) = . . . = G,_,(x, U) = 0 in D,, x U from some neighbourhood D, of the 
point x=0. 

4. CONDITIONS FOR PARTIAL CONTROLLABILITY 

The investigation of Eqs (3.3) and (3.4) is hindered by their inclusion of the control 
parameter U, which may take arbitrary values in U c R”. To cope with this problem, we 
proceed as in the theory of controllability with respect to all the variables [l, 71, expressing the 
vector D at each point of f(x, u) as a linear combination of vector fields A(x), . . . , f,(x) 

f(u)= k,(x,u)f,(x)+...+kl(X,U) fi(x)+~,+,(x,u)f,+,(x)+...+k,(x,u)f,(x) (4-l) 

k,+,(x,u)~ 0, . . . . k,(x,u)>O V(X,U)EDXU 

where the coefficients k,(x, u), . . . , &(x, u) take both positive and negative values. Then, using 
Theorems 5-7, one can prove the following theorems. 

Theorem 8. Assume that the function f(x, u) has the representation (4.1) in the domain DxU. 
Then system (1.1) is locally controllable with respect to X, = c?x if and only if the system of 
partial differential equations 
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(fi(~), VV(X))=X,(X) V(X)+G~(X) (i=l,..., r) (4.2) 

has no solution V(x) = ctTx. Here hi(x) are continuous functions, Gj(x) (j = 2+1, . . . , r) 
functions of fixed sign with the same sign in D,,, and G1 = . . . = G, = 0, where D,, is some 
neighbourhood of the point x = 0. 

Theorem 9. If system (1.1) is locally controllable with respect to x, = (a,, , . . , C#X, then the 
system of partial differential equations (4.2) has no solution V(x) = V&J. 

Theorem 10. Assume that the function f(~, U) has the representation (4.1) in the domain DxU 
and that system (1.1) is locally controllable with respect to x,(o,, . . . , QTx. Then the system of 
partial differential equations 

n-s 

(4.3) 

(p=l,..., r; i=l,..., n-S) 

has no solution K(X) = v(x,). Here h,(x) are continuous functions, G,,(n) (p=l+l, . . . , r) 
are functions of fixed sign with the same sign in D,,, and GPi = 0 for all other p, i, where D,, is 
some neighbourhood of the point x = 0. 

5. CONTROL OF THE ROTATIONAL MOTION OF A RIGID BODY 

The motion of a rigid body with one rotor about its centre of mass is described by the 
equations [l, 91 

A@>, =(A,-A,)02~3+(e2~j-ee3wz!5-e,u(123) &u (5.1) 

where cei and e, are the projections on the principal axes of the angular velocity vector of the 
body and a unit vector in the direction of angular momentum of the rotor, 5 is the magnitude of 
the angular momentum of the rotor, 4 are the principal central moments of inertia of the body, 
and u is the moment of the forces applied to the rotor, which will be treated here as the control 
parameter. 

Equations (5.1) may be derived from Eqs (41.9) of [9] by putting 5 = C(Cp+ pa + qB + ryr) and replacing 
the tensor 0, by a transformed tensor 8, based on representing the angular momentum vector of the body- 
rotor system in the form K = &I + &, where i is the unit vector along the rotor’s axis of rotation. 

As Eqs (5.1) possess an integral 

(A,o, +te,)* +(A202 +ce2)* +(A303 +ce,)* =const (5.2) 

the system is uncontrollable (with respect to all the variables) in any domain. 
In practice it is important to be able to steer the body-carrier from one rotational motion to 

another, so that system (5.1) should be controllable by varying the angular velocity o = (w,, o,, 
09). 

We will analyse system (5.1) for controllability with respect to the variables w,, w, and co,, 
after settling the question of whether there exists an OS of full or partial dimensions (Theorem 9 
or 10, respectively). 

The right-hand sides of Eqs (5.1) obviously admit of representations (4.1), and Eqs (4.2) 
become 

e, av+P, av+P, 
Al ao, 

?L!?L,,, 
A* a0, A~ aa3 ag 
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c av+, av+, av 
1 aa, 2 aw, 

- =hV+G(~,,~2,~3,Q 3 a03, 

G = + [(A, - A3 ) w% + (e203 - e302) tl(123) 
1 

(5.3) 

By Theorem 9, a necessary condition for the system to be controllable with respect to 61 is that 
system (5.3) should have no solution V = V(w,, o,, co&. Let us assume that o = 0, 5 = 0 is not a 
singular point of the surface V = 0, so that V can be represented in the form 

Substituting this function into the first equation of (5.3), we see that it satisfies the equation for 
h, = 0 and values of ki such that 

(tc,k)=O (K=(e,/Al,e2/A2,e3/A3)) (5.4) 

To investigate the second equation of (5.3), let us choose h, to have the form h, = q& + (q, 
o)+ . . . (q = (ql, q2, q3)), where there is no free term (for a non-vanishing free term would 
immediately imply that G is of variable sign). Verification of the conditions of Theorem 9 then 
reduces to verification that the function 

(5.5) 

has a fixed sign. The conditions for this quadratic form to be sign-definite imply that the 
principal minors of the coefficient matrix must vanish, Al4 = 0, Aa = 0, A% = 0, so that we obtain 
a homogeneous system of linear equations in ki 

A2A3q,,k, - A3e3k2 + A2e2k3 = 0 (1,2,3) 

This system has a non-trivial solution ki = Aeib (p = const) only if q,, = 0. Substituting the 
values of ki thus determined into (5.4), we obtain et +ei +ei = 0, which contradicts the 
normalization condition ef +ei +ei = 1. Thus, system (5.1) does not have an OS of full 
dimensions (system (5.3) does not have a solution V =V(ol, co,, a,)), and by Theorem 9 
system (5.1) satisfies the necessary conditions for local controllability with respect to o,, w,, 
03. 

We will now examine the existence of an OS of partial dimensions, for which we use Theorem 
10. It will suffice to consider the case s = 2 (two-dimensional OS), since if s = 3 it immediately 
follows from Eqs (5.3) that e, = e, = e, = 0, contradicting the normalization condition. Eqs (4.3) 
are 

3 aYz : 2 %+2iL ava 
ao, 

_?!L=, 
a6 

al 
v+h v 

Al aa, A, ao, -4, 
1 a2 2 

c ~%+c 
1 aa, 

‘“a +c .i% =A 
2aw, 3 ao, 2+alY +h2+a2VZ+62+a3Gv a=1*2 

(5.6) 

By Theorem 10, a necessary condition for system (5.1) to be controllable with respect to o is 
that system (5.6) should have no solutions VI = &(o,, w,, 03), V, = V2(w1, a,, 61~). Let us 
assume that o = 0, 5 = 0 is a point of intersection of the surfaces VI = 0, V, = 0 but not a singular 
point of either surface. Then V, and V, can be represented in the form 

v, =(k,o)+ . . . . V, =(n,o)+... 
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where k = (k,, k,, kJ and n = (q, n,, n3) are non-zero and non-collinear vectors. Substituting 
these functions into the first two equations of (5.6), we see that these equations hold for 
I,, = h,, = h,, = h, = 0 and values of ki, ni that satisfy the equations 

(K,k)=o, (K,rt)=o (5.7) 

To investigate the other two equations of (5.6), we choose the functions h, to have the form 
h, = q&+(qij, co)+ . . . qt = (qi,l, qijl, qua), where there are no free terms (for non-vanishing free 
terms would imply either that G is of variable sign or that the condition for the surfaces V, = 0, 
V, = 0 to intersect is violated). Then G may be written as 

(5.8) 

The condition that this function should have a fixed sign implies that the quadratic form of G is 
independent of & 

For further analysis, we use the conditions for system (5.6) to be consistent. Consider the 
Jacobi brackets of the first and third and the second and fourth equations 

s, _ (A3-A2) 

AlA2A3 
(e2~3~3 +e,A,a, +e2e3&(123) 

Again substituting the expressions for V,, V, and taking into account that G is independent of 
5, we equate the coefficient of 5 to zero and obtain two equations 

W)=O, (x,n)=O 

(x’= ((4 -4) e2e3, (4 - 4) ele3, (4 -4) e2el)) 

(5.9) 

Considering Eqs (5.7) and (5.9) simultaneously, we conclude that a necessary condition for 
the vectors k and n to be non-collinear is that the vectors K and x should be collinear. 

Equating the vector product of these vectors to zero, we obtain a system of equations whose 
solution is 

e2 = e3 = 0, e, = 1 (123) (5.10) 

A direct check will verify that, under conditions (5.10), system (5.6) has a solution 

V, =02, V2 =O3 

h ,,=h,2=h2,=h22=h3,=h42 =0, G=O 

Thus, it follows from Theorem 10 that under conditions (5.10) system (5.1) is uncontrollable 
with respect to the variables o,, cc,, 0,; if the parameters e, do not satisfy conditions (5.10), the 
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system satisfies the necessary condition for local controllability with respect to w,, w,, w,. 
In conclusion, we note that the use of a rotor to control the rotational motion of a rigid body 

offers more possibilities for control than the use of a jet engine, for which there are additional 
forbidden positions relative to the body-carrier [l, lo]. 
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